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Precise values of coefficients in the physical models using partial differential equations (PDEs)
are often not known. In such situations, the coefficients are typically treated as random variables
in an attempt to quantify uncertainty in the underlying problem. The most popular approach for
solution of such problems is the Monte-Carlo method [21]. This method is robust and versatile but
tends to exhibit slow convergence. In the last two decades, significant effort has been devoted to
development of methods that leverage regularity of the solution and outperform Monte-Carlo meth-
ods, at least for problems with stochastic dimensions that are not too large. The most promising
developments, known generically as spectral methods [11, 28], include stochastic Galerkin methods
[1, 3, 11] and stochastic collocation methods [2, 20, 29], The first approach uses a global Galerkin
projection that tranlates the stochastic PDE into one large coupled algebraic system. The second
one samples the stochastic PDE at a predetermined set of collocation points, which yields a set
of uncoupled deterministic systems that can then be used to interpolate the solution in the en-
tire random input domain. Because extending legacy software to support the collocation points is
relatively simple, collocation methods are often regarded as non-intrusive. In contrast, Galerkin
methods are intrusive and require the development of new solvers, although when this is done
effectively, Galerkin methods may be more efficient than collocation methods [9].

It is not unusual today to see deterministic computations discretized using millions of degrees
of freedom. The introduction of parameters into this mix will further increase the complexity by
multiple orders of magnitude. Thus, this problem class is ripe for treatment on exascale machines.
Our aim here is to explore, test and refine iterative methods for solving in an exascale environment
the algebraic systems that arise from spectral treatment of stochastic PDEs. Specific directions of
research include:
1. Block structure in stochastic Galerkin methods. Matrices arising from stochastic
Galerkin methods have a block structure derived from the tensor product form of the discretization.
Component blocks have a sparsity structure given by the underlying spatial discretization, and the
full block structure depends on the expansion used for random field that represents uncertainty in
the model. One such expansion, the Karhunen-Loève (KL) expansion [16], leads to block sparse
structure of global matrices. Another is the generalized polynomial chaos (gPC) expansion [30],
which is suitable for expansions of random fields with general probability distributions whose de-
pendence on parameters is nonlinear, for example, where the random coefficients follow a lognormal
distribution. This generality comes at a cost, however, since it leads to global matrices with a block
dense structure. Although this is viewed as a liability of this approach, in an exascale setting this
may be less of an concern. For example, it may be possible to load and process component dense
blocks arising from gPC discretizations while simultaneously performing matrix-vector operations
(matvecs) associated with sparse spatial discretization in ways so that data movement associ-
ated with matvecs is masked. These ideas can be tested in combination with recently developed
[22, 23] preconditioners that take advantage of the recursive hierarchy in the (“outer”) block struc-
ture, which is due to the stochastic Galerkin projection. These methods do not require either the
global matrix or the matrix of the preconditioner to be formed explicitly, and there is significant
opportunity to mask communication with dense matrix operations.
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2. Reduced-order models for stochastic PDEs. Reduced-order models [4, 5, 13, 14] are
designed to make large-scale simulations more amenable to efficient solution when resources are
scarce. However, many aspects of this methodology can benefit from use of large-scale computing
resources. A brief statement of the approach follows. For a discrete parameter-dependent PDE
Fξ(u) = 0 of (large) order N , a set of solutions {uj = uξj

}n
j=1, n � N , is obtained with the goal

that Sn = span{uj} capture the dynamics of the model. Methods of uncertainty quantification
[8] (and general simulation) can be performed on the smaller space using, for example, a Galerkin
condition U (n)TFξ(uR) = U (n)TFξ(U (n)η) = 0 where U (n) is a basis for Sn. Components of this
process that lend themselves to large-scale computation include:
(a) Construction of the reduced basis. This can be done using direct search methods [4] or by
optimizing an error functional [5] to identify parameters to use for the construction of Sn. In a
computing environment where communication overhead decreases efficiency of sparse computations,
local optimizations within regions (of the parameter space) can be performed in order to produce
(perhaps) sub-optimal reduced bases much more rapidly than optimal ones.
(b) Solving the reduced-order model. In conventional computing environments, the size of the
reduced basis may be large enough to make the reduced model more expensive to solve by direct
methods than applying fast (e.g., multigrid) methods to the underlying sparse problem. (We have
seen [8] bases on the order of 1000 for problems with many parameters.) This difficulty may be
turned around in an exascale setting, where sparse solvers could be communication bound but the
processing of dense sets for reduced models are used to advantage to reduce the impact of data
movement. This idea also complements the previous discussion, whereby we may deliberately allow
the reduced basis to grow.
(c) Overlapping construction and use of reduced bases. When reduced basis methods are used for
uncertainty quantification, it may be that a partial reduced basis is capable of resolving some parts
of the parameter space. Therefore, rather than waiting for the full construction of the basis, we
can allow the reduced computations to begin earlier and use error estimates to assess the utility of
reduced solutions obtained from partially computed reduced bases.
3. Adaptive multilevel domain decomposition methods. We can combine these ideas
with domain decomposition methods for the spatial components of problems. We have developed
the Adaptive-Multilevel BDDC method [24], which is currently the most advanced variant of the
Balancing Domain Decomposition by Constraints (BDDC) method introduced in [6, 7, 10], It is
also relatively straightforward to extend the BDDC method to a multilevel method [18, 26, 27].
This effectively removes the bottleneck associated with solution of coarse grid problems, which
represents the primary limitation on efficiency of domain decompositions on large-scale parallel
computers. The method also allows for adaptive selection of the components of the method [17, 19]
on every decomposition level, which enables detection the troublesome parts of the problem and
improve convergence rates at modest computational cost.

Thus, our aim is to combine the natural parallelism of state-of-the-art domain decomposition
methods with new approaches for treating uncertainty using block methods and reduced basis
methods. Our expectation is that communication overhead can be reduced through use of dense
matrix methods and overlapping of dense and sparse computation. To the best of our knowledge,
use of domain decomposition solvers for stochastic computations has been studied only in a handful
of publications, e.g., [12, 15, 25, 31], and the state of the art does not reflect their full potential. We
expect the large-dimensional algebraic problems that arise from PDEs with uncertain coefficients
to present an ideal testbed for exascale computing.
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